A Five-color Theorem for Graphs on Surfaces
نویسنده
چکیده
We prove that if a graph embeds on a surface with all edges suitably short, then the vertices of the graph can be five-colored. The motivation is that a graph embedded with short edges is locally a planar graph and hence should not require many more than four colors. Introduction. It is well known [4, 15] that a graph embedded on a surface of genus k > 0, the sphere with k handles, can always be //(/c)-colored, where H(k) = [(7 + \/48fc + 1 )/2]; H(k) is called the Heawood number of the surface. A variety of properties are known which ensure that an embedded graph needs significantly fewer than H(k) colors, for example, large girth [12, 13], few triangles (for graphs on the sphere or torus and, more generally, on surfaces of nonnegative Euler characteristic) [9, 11] and Eulerian properties of the (topological) dual graph [10]. On the other hand, one can look for properties which ensure that an embedded graph is locally a planar graph and hence needs not many more than four colors. In this spirit, Mycielski [14] has asked whether for every surface S there is an e > 0 such that a graph embedded on S with edges of length less than e can be five-colored. We restate Mycielski's question in terms of an explicit metric and then answer it in the affirmative for all surfaces. Work of Albertson and Stromquist [3] has already settled the case for the torus (k = 1), and we use many of their techniques in our proof. Also in [3] examples due to J. P. Ballantine and S. Fisk are given which show that no similar result for four-colorability is possible for any surface of positive genus. A surface of genus k > 1 can be represented as a 4/c-sided polygon with pairs of sides identified [7, 16, 18]. If a graph is embedded on a surface of genus k > 1, we obtain a representation Gk of G in and on the boundary of the 4/c-gon. Without loss of generality we take the polygon to be a regular Ak-gon with sides of unit length; we call this the standard Ak-gon, Pk. Each edge of G is represented in Gk by one or more arcs in Pk (if an edge crosses the boundary of Pk, it is divided into pieces). As explained in [5, p. 16], we may assume that each arc of Gk is a polygonal arc; then by the length of an edge of an embedded graph G we mean the sum of the lengths of its polygonal arcs in the representation Gk. Thus length is always defined in terms of a fixed representation of the graph on a standard polygon. Our main result is the following. Received by the editors March 30, 1983. Presented at the 806th meeting of the AMS, October 29, 1983. 1980 Mathematics Subject Classification. Primary 05C15, 05C10.
منابع مشابه
An extension theorem for finite positive measures on surfaces of finite dimensional unit balls in Hilbert spaces
A consistency criteria is given for a certain class of finite positive measures on the surfaces of the finite dimensional unit balls in a real separable Hilbert space. It is proved, through a Kolmogorov type existence theorem, that the class induces a unique positive measure on the surface of the unit ball in the Hilbert space. As an application, this will naturally accomplish the work of Kante...
متن کاملColoring graphs using topology
Higher dimensional graphs can be used to color 2dimensional geometric graphs G. If G the boundary of a three dimensional graph H for example, we can refine the interior until it is colorable with 4 colors. The later goal is achieved if all interior edge degrees are even. Using a refinement process which cuts the interior along surfaces S we can adapt the degrees along the boundary S. More effic...
متن کاملColoring graphs with crossings
We generalize the Five Color Theorem by showing that it extends to graphs with two crossings. Furthermore, we show that if a graph has three crossings, but does not contain K6 as a subgraph, then it is also 5-colorable. We also consider the question of whether the result can be extended to graphs with more crossings.
متن کاملA 4-COLOR THEOREM FOR SURFACES OF GENUS g
For .f a set of graphs, define the bounded chromatic number Xb(&) (resp. the bounded path chromatic number Xpfë) ) to be the minimum number of colors c for which there exists a constant M such that every graph G € 2? can be vertex c-colored so that all but M vertices of G are properly colored (resp. the length of the longest monochromatic path in G is at most M ). For 3? the set of toroidal gra...
متن کاملA Three and Five Color Theorem
Let / be a face of a plane graph G. The Three and Five Color Theorem proved here states that the vertices of G can be colored with five colors, and using at most three colors on the boundary of /. With this result the well-known Five Color Theorem for planar graphs can be strengthened, and a relative coloring conjecture of Kainen can be settled except for a single case which happens to be a par...
متن کاملDigital cohomology groups of certain minimal surfaces
In this study, we compute simplicial cohomology groups with different coefficients of a connected sum of certain minimal simple surfaces by using the universal coefficient theorem for cohomology groups. The method used in this paper is a different way to compute digital cohomology groups of minimal simple surfaces. We also prove some theorems related to degree properties of a map on digital sph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1984